Chaos Control on Universal Learning Network
نویسندگان
چکیده
منابع مشابه
Neural Network Learning Based on Chaos
Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is ...
متن کاملControl of collective network chaos.
Under certain conditions, the collective behavior of a large globally-coupled heterogeneous network of coupled oscillators, as quantified by the macroscopic mean field or order parameter, can exhibit low-dimensional chaotic behavior. Recent advances describe how a small set of "reduced" ordinary differential equations can be derived that captures this mean field behavior. Here, we show that cha...
متن کاملOn Universal Transfer Learning
In transfer learning the aim is to solve new learning tasks using fewer examples by using information gained from solving related tasks. Existing transfer learning methods have been used successfully in practice and PAC analysis of these methods have been developed. But the key notion of relatedness between tasks has not yet been defined clearly, which makes it difficult to understand, let alon...
متن کاملAdaptive Learning Control Network
This paper proposes a reinforcement fuzzy adaptive learning control network (RFALCON) for solving various reinforcement learning problems. The proposed RFALCON is constructed by integrating two fuzzy adaptive learning control networks (FALCON’S), each of which is a connectionist model with a feedforward multilayer network developed for the realization of a fuzzy controller. One FALCON performs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the Society of Instrument and Control Engineers
سال: 1996
ISSN: 0453-4654
DOI: 10.9746/sicetr1965.32.844